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Abstract: - This paper considers the permutation and scaling indeterminacy problem of blind source separation 
(BSS) in the case that the continuously mixing signals are split in time and processed block by block. When 
tying the separated signals in each time block, the recovered whole signals differ from the original sources up 
to permutation and scaling indeterminacies. Inspired by previous Permutation Method of reconstructing source 
signals in time domain, a novel approach is proposed to eliminate the inherent permutation and scaling 
indeterminacies when the block BSS is considered. This new method reformulates the mixing signals by 
overlapping adjacent signal blocks partially and utilizes the dependent correlation of the overlapping signals in 
each adjacent block to adjust the permutation and scaling parameters. Compared with the Permutation Method, 
this new method is more efficient in terms of separation quality and is much quicker in terms of execution 
speed. The performance of this novel approach is confirmed by computer simulations and realistic experiments 
performed on wireless communication system. 
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1 Introduction 
For the recent decades, blind source separation (BSS) 
has received considerable attention, mainly due to 
its wide panel of potential applications such as 
image recognition, audio processing, biology, 
wireless communications, etc [1]. BSS shows 
significant advantages in recovery of unknown 
source signals over other frameworks where 
techniques strongly depend on the information of 
signal diversity, transfer functions and so on. In the 
case where source signals are linearly and 
instantaneously mixed, BSS corresponds to 
independent component analysis (ICA). The core 
assumption in ICA is reduced to the statistical 
mutually independence between sources [2].  

However, for BSS one problem is inhered from 
the property of the following ambiguities as 
presented in [3]. The first ambiguity is the existence 
of the unknown complex scaling factor, which 
results in the ambiguous phase and amplitude in 
separated signals. The other ambiguity is the 
permutation of the separated signals. These 
ambiguities cause problems when continuously 
incoming measurement data is split in time and 
when they are processed block by block. Tying 

components at adjacent blocks without permutation 
and rescaling does not recover the original signals 
correctly. In order to solve the problem, several 
methods have been contrived as follows. 

DOA type [3], [4] methods tie signal blocks with 
similar DOA and require an array manifold. Since it 
requires an array manifold, it degrades permutation 
accuracy by calibration error. Correlation based 
methods [5], [6] compute the correlation coefficient 
of all possible combination of separated signals in 
adjacent blocks. But they are not appropriately used 
in practical application in terms of computational 
resource. Recently, a permutation alignment scheme 
based on microphone array directivity patterns for 
speech signals is proposed in [7], where interesting 
connections between BSS and ideal beamforming is 
explored. A permutation method based upon the 
similarity of the column vectors of the mixing 
matrix and tracking filters is proposed to 
concatenate ICA separated source signal time blocks 
[8]. However, the tracking filter is difficult to 
control and complex to design. A contrast function 
for ICA without permutation ambiguity is proposed 
in [9], [10]. It is proved that a linear combination of 
the separator output fourth-order marginal 
cumulants is a valid contrast function for ICA under 
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prewhitening if the weights have the same sign as 
the source kurtosis [11]. If, in addition, the source 
kurtosis are different and so are the linear 
combination weights, the contrast eliminates the 
permutation ambiguity typical to ICA, as the 
estimated sources are sorted at the separator output 
according to their kurtosis values in the same order 
as the weights.  

Inspired from the Permutation Method in [8], in 
this paper, we propose a novel approach to eliminate 
the permutation and scaling indeterminacies of BSS 
in the case where continuously mixing measurement 
data is split in time and processed block by block. 
We artificially reformulate the mixing signals by 
making adjacent signal blocks overlap partially. 
Taking advantage of the dependent correlation of 
separated components in the overlapping part of 
corresponding adjacent blocks, the permutation and 
scaling of the latter blocks are adjusted to be 
identical to that of the former blocks. Computer 
simulations and realistic experiments are performed 
to validate the performance of our new method.  

This paper is organized as follows. The system 
model and assumptions are presented in Section 2. 
Our novel approach is introduced in Section 3. 
Computer simulations and realistic experiments are 
performed in Section 4. Section 5 concludes this 
paper. 
 
2 Model and Assumptions 
2.1 System model 
In this paper, the BSS system model we consider is 
shown in Fig. 1. The source signals are denoted by 

, where T means the 
transpose. The mixing signals are denoted by 

. The relationship between 
source and mixture signals can be described as 

1( ) [ ( ), , ( )]T
Nt s t s t=s

1( ) [ ( ), , ( )]T
Mt x t x t=x
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Fig. 1. BSS system model 

 
( ) ( )t =x As t                          (1) 

where A is the mixing matrix of M N× , which is 
composed of M  row vectors, i.e., 

.  1 2[ , , , ]T
M=Α a a a

Similarly, the recovered signals are denoted by 
. The relationship 

between mixture and separation signals   can be 
described as 

( ) ( ) ( )1t [ t , , t ]T
Ny y=y

     ( )t H=y W x ( )t                     (2) 

where W is the separating matrix of M N× , which 
contains  column, i.e., . N 1 2[ , , , N=W w w w ]

HW  means the Hermitian of W , that is W  is 
transposed and conjugated. Without loss of 
generality and for simplicity, we assume the number 
of sources equal to that of observed signals, i.e., 
N M=  in this paper. 
 
2.2 Assumptions on the model 
In order to recover the source signals blindly and 
successfully, we make two assumptions on the BSS 
system model. 

A1. The source signals are stationary and 
statistically independent, and they have zero-mean 
and unit variance. 

    A2. The mixing system is linear and 
instantaneous. 
 
3 New Permutation and Scaling 
Elimination Approach 
3.1 Permutation and scaling indeterminacies 
First, we set the global matrix as . In 
fact, the recovered signals are the estimations of 
sources up to permutation and scaling 
indeterminacies, i.e., 

H=G W A

=y Gs    
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⎟
⎟
⎟
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     (3) 

where , , 1,2, ,gij
i ij j ij jy g s g e s i j Nϕ
= = = .  

The permutation indeterminacy exists when 
i j≠  and the scaling indeterminacy, amplitude and 

phase, exist when  1ijg ≠  or 0
ijgϕ ≠ . The 

indeterminacies are common to all BSS methods; 
fortunately, they are insignificant in most 
applications. However, when the mixing data is split 
in time and processed block by block, tying the 
separated signals in each time block may not 
recover the original sources correctly. More 
precisely, the separated signals of each adjacent 
block may differ in permutation, amplitude and 
phase, which may lead to indeterminacy when they 
are tied together. As shown in Fig. 2, it can be seen 
obviously that the ambiguity problem exists 
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between source signals and recovered signals when 
tying recovered signals block by block. 

Source 
signals

Separated signals
Time

 
Fig. 2. Ambiguities between source signals and 

recovered signals 
3.2 Overlapping signals 
Second, we reformulate the mixing signals by 
overlapping adjacent time blocks partially, which is 
called the overlapping signals. When the samples 
rate is fixed, we assume the samples of each block 
are T. The i-th and (i+1)-th block of mixture signals 
are denoted by 

 and (1: ) [ (1), (2), , ( )]i i i i iT T= =x x x x x
1 1 1 1 1

1 1 1

(1: ) [ (1), (2), , ( )]
[ ( 1), ( 2), , ( ),

( 1), ( 2), , ( )]

i i i i i

i i i

i i i

T T
T L T L T

L L T

+ + + + +

+ + +

= =

= − + − +

+ +

x x x x x
x x x

x x x

( 1), ( 2), , ( )i i iT L T L T− + − +x x x

 

(4) 
In (4), we can see clearly the first L samples 

 in the (i+1)-
th block are the overlapping part between the i-th 
and (i+1)-th block, i.e., the overlapping signals. For 
simplicity, we assume T is divisible by L in this 
paper. The structural model of the i-th and (i+1)-th 
mixture blocks and corresponding overlapping 
signals is shown in Fig. 3, in which the length of 
overlapping signals is artificially set by L. 

 
Fig. 3. The i-th and (i+1)-th mixture blocks and 

corresponding overlapping signals with length of L. 
 

For the sake of convenience, we denote the 
separated signals of the i-th block of mixture signals  
by (1: ) [ (1), (2), , ( )]i i i i i iT T= =y y y y y G s
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i

, 
i.e., 

        (5) 

3.3 Our proposed method 
Third, based on the assumption A1, all the sources 
are zero-mean and with unit variance. Hence, we 
can eliminate the amplitude indeterminacy by 
normalizing the amplitude of all the separated block 
signals. The remaining permutation and phase 
indeterminacies are eliminated by using our 
proposed method shown as follows: 

 
For 1, 2,=  
1. 1 1( ), ( )i i i iBSS BSS+ += =y x y x  
2. 1( ( 1: ).*( (1: )) )i i i HT L T L L+− +y y

1, 2, ,
Φ =  

j N=3.  For 
, ] ( ,:)))temp mark j

1 1 1 1
1 1, ,i i i i

j j mark marky y y y

 
   (a). [  max( ( iabs= Φ

ψ+ + + +=   (b). ψ = =
1

1

( ( 1: ) (1: ))
( ( 1: ) (1: ))

i i
j j

i i
j j

norm y T L T y L
norm y T L T y L

+

+

− + − >
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1 1i i
j jy y+ += −

1i B

 

   (c). If ⎨  
⎧⎪

                                     
          end; 
end; 

+ ≤  4.  If 
      Go back to step 1. 
end;  
 

In this new method, ( )BSS x  in Step 1 means to 
separate mixing signals using BSS algorithms. In 

this paper, we choose the fast fixed-point algorithms 
for complex-valued signals based on negentropic 

contrast criterion in [12], which is used in [8]. This 
is convenient to compare the performance of our 
new method with the Permutation Method in [8]. 

The correlation matrix of overlapping signals iΦ  in 
Step 2 is L L× , which results from the widely 
accepted concept that the expectation value of 

random variable can be approximately represented 
by the mean value of all samples for one realization 

in time domain when the variable is stationary. 
Therefore, according to the assumptions A1 and A2, 
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we have following approximate estimation. 
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In Step 3,  

in (a) is the MATLAB function that is used to find 
the maximization value of each row in 

 and return the value and 
corresponding column index, in which abs means 
the absolute value or norm value when it 
corresponds to complex-valued variable. The 
purpose of (a) is to search for the dependent 
component in the next block, which is based on the 
fact that 

[ , ] max(mark abs

( ( ,:))iabs jΦ
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. (b) aims to eliminate the 
permutation indeterminacy. When there doesn’t 
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(c) aims to eliminate the phase indeterminacy. 
Note that we just consider to change the phase by π , 
which can be seen clearly in (c). More precisely, we 
only consider the case , which may 
not satisfy the practical needs absolutely. However, 
note that it is well acceptable and suitable in the 
case that our system model and assumptions are 
considered in this paper. As for the case 

, we postpone it to our future work. 
When there aren’t permutation and scaling 

indeterminacies, the correlation matrix 

1( )i i
ii iig g + ∗

1( ) 1i i
ii iig g + ∗ ≠ ±

i

1= ±

Φ  can be 
simplified to be identity matrix, i.e.,  . iΦ = I
 
4 Simulation and Experiment Results 
4.1 Computer simulations 
4.1.1 Simulation 1 
In this section, we choose the sine signal, square 
signal and random signal as sources. The number of 
mixing signal block B is 5, in which sources are 
randomly mixed. The number of samples of each 
mixing signal block T is 200 and the number size of 
corresponding overlapping signals L is set 100. The 
classical algorithm in [12] is chosen as the 
separation method, which is similar to that in [8]. 
The simulation results are shown in Fig. 4. 

Source 1

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

0 200 400 600 800 1000
-1

-0.5

0

0.5

1
A

m
pl

itu
de

Source 2

0 200 400 600 800 1000
0

0.5

1

Number

Source 3

 of samples with five blocks

0 200 400 600 800 1000
-2

-1

0

1

2
Separation 1 without using our method Separation 1 with using our method

2

0 200 400 600 800 1000
-2

-1

0

1

2

A
m

pl
itu

de

Separation 2 without using our method

0 200 400 600 800 1000
-2

-1

0

1

2

Number of samples with five blocks

Separation 3 without using our method

0 200 400 600 800 1000
-2

-1

0

1

2

0 200 400 600 800 1000
-2

-1

0

1

A
m

pl
itu

de

Separation 2 with using our method

Separation 3 with using our method
2

0 200 400 600 800 1000
-2

-1

0

1

Number of samples with five blocks

Fig. 4. Simulation results with the sine signal, 
square signal and random signal. The first column is 
source signal, the second column is the separation 
signal concatenated without using our method and 

the third column is the separation signal 
concatenated with using our method. 

 

 
As shown in Fig. 4, it can be seen clearly that the 

connected separation signals in each adjacent signal 
block in the second column are different from 
corresponding source signals. This means that the 
source signals are not recovered successfully, which 
is caused by the indeterminacies in BSS. However, 
in the third column, it can be observed obviously 
that the separated components between adjacent 
signal blocks are concatenated successfully by using 
our proposed method. Therefore, our new approach 
is very efficient in terms of solving the permutation 
and scaling indeterminacies in BSS when the 
mixing signals are processed block by block. 
 
4.1.2 Simulation 2 

In this section, we choose three speech signals as 
sources because speech signals are usually not 
continuous in time domain. Given the fact that our 
new method utilizes the dependent correlation 
between the overlapping signals in time domain, we 
consider to perform simulations to validate the 
performance of our approach with speech signals. 
Moreover, the speech signals are widely used in the 
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realistic application, especially in the wireless and 
mobile communication.  

The number of mixing signal block B is 5, in 
which sources are randomly mixed. The number of 
samples of each mixing signal block T is 5000 and 
the number size of corresponding overlapping 
signals L is set 2500. The classical algorithm in [12] 
is chosen as the separation method, which is similar 
to that in [8]. The simulation results are shown in 
Fig. 5. 
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Fig. 5. Simulation results with speech signals. 

The first column is source signal, the second column 
is the separation signal concatenated without using 
our method and the third column is the separation 

signal concatenated with using our method. 
 

Compared the concatenated separation signals in 
the second column with the source signals in the 
first column, it can be observed clearly that the 
separated signals in each adjacent block are not 
connected correctly. When our proposed method is 
used, the concatenated separation signals in the third 
column are almost the same with the sources. This 
means that our method succeeds in eliminating the 
permutation and scaling indeterminacies in the case 
that mixing signals are split in block and processed 
block by block. 
 
4.1.3 Simulation 3 

In this section, we perform simulations to 
analyze the performance of our indeterminacy 
elimination method, which is mainly compared with 
that in [8]. We choose the signals in Simulation 1 
section as sources. In order to improve the time 
efficiency of our method, we set the number of 
samples of each block T=400 and the number of 
blocks B varies from 10 to 50. The length of 
overlapping signals changes from 20 to 400, i.e., 
L=20, 40, …, 400. For convenience and simplicity, 
we choose T Lα =  with α =1, 2, 4, 10 and 20 as 
the donation. The classical algorithm in [12] is 
chosen as the separation method. 

The mean value of mean square error (MSE) 
between concatenated separation signals and 
sources is chosen as the measure criterion for 
separation quality. And the execution time of 

concatenating all separated signal blocks is chosen 
as the measurement of efficiency in terms of 
computational speed, for which the computer is Intel 
(R) Core ™ 2 Duo CPU, E8400 @ 3.0GHz, 
2.99GHz, 3.00 GB RAM. To ensure the validity and 
reliability of simulation data, 100 Monte-Carlo runs 
are performed independently. The simulation results 
are illustrated in Fig. 6 and Fig. 7. 
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Fig. 6. MSE between sources and connected 

separations for Permutation Method in [8] and our 
proposed method with  α =1, 2, 4, 10 and 20 

averaged over 100 Monte-Carlo runs. 
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Fig. 7. Execution time of concatenating the 

separated sources in different number of blocks for 
Permutation Method and our proposed method with 
α =1, 2, 4, 10 and 20 averaged over 100 Monte-

Carlo runs. 
 

As shown in Fig. 6, it can be observed clearly 
that the MSE value of Permutation Method and our 
proposed method decreases with the number of 
blocks increasing. When the block size is fixed, the 
MSE of our approach differs with the length of 
overlapping signals changing. More precisely, when 
B varies from 10 to 50, our proposed method 
outperforms Permutation Method with α =1, 2, 4, 
10, and the performance of our approach becomes 
slightly better and better with α  decreasing. 
However, when α =20, our method performs worse 
than Permutation Method, which is caused by the 
fact that the number of samples of the overlapping 
signals is not many enough. Hence, it can be 
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predicted that, in the same condition, the 
performance of our method will be worse and worse 
when α  is larger than 20. Since the choice of α  
relates to the length of signal blocks, it is difficult to 
determine the exact α  such that our approach 
performs better or worse than Permutation Method.  

From Fig. 7, we can see obviously that the 
execution time of our proposed approach with α =1, 
2, 4, 10, 20 is less than that of Permutation Method. 
The advantage of our method becomes more and 
more apparent when the number of blocks increases 
and the length of overlapping signals decreasing. 
For instance, when B=30, the execution time of 
Permutation Method is about 77s, while our method 
needs about 74s, 71s, 67s, 65s, 63s, respectively, for 
α =1, 2, 4, 10, 20. Furthermore, when B=40, the 
time of the former is about 102s, while the latter 
needs about 97s, 95s, 90s, 86, 84s. And it can be 
predicted that, when α  increases, the time of our 
method will be less, which is not illustrated in Fig. 7. 

Combined Fig. 6 and Fig. 7, we can draw the 
conclusion that, when the block size and 
corresponding length of overlapping signals are 
chosen appropriately, our proposed method is more 
efficient than Permutation Method in terms of 
separation quality and computational speed. For 
example, when B=50 and α = 10, the performance 
of our approach is not only better than Permutation 
Method but also only needs much less time of the 
latter. However, when B=50 and α = 20, our 
approach needs much less time than Permutation 
Method but the performance of it is worse than the 
latter. Therefore, the performance of our proposed 
method with respect to separation quality and 
computational speed can be adjusted according to 
the choice of block size and corresponding length of 
overlapping signals. More analysis about the exact 
relationship between them in detail will be included 
in our latter work. In general, when the number of 
samples of signal blocks is about 1000, α =10 to 40 
is recommended. 
 
4.2 Realistic experiments 
4.2.1 Realistic wireless communication model 
In this section, a wireless communication system 
with two transmitting and receiving antennas is 
constructed in this paper, which is shown in Fig. 8. 
For simplicity, we assume the carrier and local 
frequencies are the same, i.e., 

1 2 3 4 0 30MHzω ω ω ω ω= = = = = . And the 
synchronous and carrier frequency offset problems 
are not considered in this paper.  

1I
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Fig. 8. Wireless communication system model 

 
The transmitted source signals are complex-

valued, denoted by 

1 1 1

2 2 2s I Q i
= =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

s                      (8) 

As shown in Fig. 8, the sources are modulated on 
carrier frequencies, which is send out through 
transmitting antennas.        

At the receiver, the received signals are 
demodulating through local frequencies. After low 
filtering, the mixing signals can be approximately 
seen as the mixture of sources, which are 
represented as 

1 1 1 11 1x I Q i a a s
x I Q i a a s

⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′+⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⇒ =

x

x As

1 11 12 1

2 21 22 2

H

H

′ ′+⎛ ⎞ ⎛ ⎞ ⎛
= = =

     (9) 

where A denotes the wireless channel, which is 
unknown. The separating operator is given as 

y w w x
y w w x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⇒ =

y

y W x

            (10) 

In order to satisfy the assumptions A1 and A2, 
we use two E4438C [13] as the transmitters, which 
can send radio signals in the form of single, AM, 
BPSK, speech and so on. At the receiver, we use the 
USRP with GUN Radio [14] device to receive the 
RF signals.  

To satisfy A1, we set the distance of two 
transmitters about 5 meters away and make sure that 
they transmit signals independently. In this way, the 
source signals are statistically independent, even 
though they are not absolutely independent. 
However, the approximate independence between 
sources is accepted, which is verified by our 
experimental results in the following.  

To satisfy A2, we set the distance between 
transmitters and receivers about 5 meters away, 
which ensures that the wireless channel is as 
approximately linear and instantaneous as possible. 
Although the mixing system is not absolutely linear 
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and instantaneous, it is so approximate that the 
experimental results prove that it works well. 
 
4.2.2 Experiment 1 
In this section, we choose two single signals as 
sources. When the sample rate is fixed, we set the 
number of samples of each block T=1000 and the 
number of blocks B=5. Here we set the length of the 
overlapping signals L=T/2=500. The transmitted 
power is 0 dBm and the classical algorithm in [12] 
is chosen as the separation method. The 
experimental results are shown in Fig. 9, Fig. 10 and 
Fig. 11. 
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Fig. 9. Mixing signals with five blocks in time 

and frequency domain 
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Fig. 10. Separating signals without using our 

proposed approach in time and frequency domain 
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Fig. 11. Separating signals using our proposed 

approach in time and frequency domain 

As shown in Fig. 10, the concatenated signals 
after separating don’t recover the original sources 
correctly, which is more obvious in the frequency 
domain. Compared the frequency domain of Fig. 9 
and Fig. 10, we can see that the permutation and 
scaling indeterminacies affect the separation quality 
seriously when tying each separated adjacent block 
together. However, note that the signals in Fig. 11 
using our new approach successfully recover the 
original source waveform. It can be observed clearly 
in the frequency domain that two single signals are 
totally separated. Compared the time domain signals 
in Fig. 10 and Fig. 11, we can see that the 
connection ambiguity caused by permutation and 
scaling indeterminacies are eliminated by using our 
new method. 

In order to verify the performance of our method 
further, we analyze the correlation matrices of the 
overlapping signals briefly as follows. 

1 0.0033 0.0062i+⎛ ⎞
Φ = ⎜ ⎟

1.0096 + 0.2094i
.2855i

2 0.0001 0.0044i− +
Φ =

-0.9382 + 0.3466i
 

0.0020 0.0016i+ -0
 

 

As for Φ , when j=1, 
[ , ] [1.0311,2]temp mark = , which means that first 
separated signal in the i-th block corresponds to the 
second separated component in the (i+1)-th block. 
Then the second signal in the i-th block corresponds 
to the first in the (i+1)-th block, which can be drawn 
from [ , ] [1.0007,1]temp mark =  with  j=2. 
 
4.2.3 Experiment 2 

In this section, we investigate the effect of the 
transmitted power of sources on the separation 
quality of our proposed method and Permutation 
Method in [8]. We choose the number of blocks 
B=10, for which the number of samples of each 
block T=1000. The length of overlapping signals 
changes from 20 to 400, i.e., L=20, 40, …, 400. For 
convenience and simplicity, we choose T Lα =  
with α =1, 2, 4, 10 and 20 as the donation. The 
transmitted power ranges from -20 dBm to 20dBm, 
and the classical algorithm in [12] is chosen as the 
separation method. The experimental results are 
shown in Fig. 12. 
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Fig. 12. MSE between sources and connected 

separations for Permutation Method in [8] and our 
proposed method with  α =1, 2, 4, 10 and 20 when 
the transmitted power ranges from -20 dBm to 20 

dBm averaged over 100 Monte-Carlo runs. 
 

From Fig. 12, we can see clearly that the 
performance of our method and Permutation 
Method changes with the transmitted power 
increasing, which is different from the computer 
simulations. In fact, when the transmitted power 
increases, the performance of two methods doesn’t 
become better and better monotonously. This is a 
special and interesting phenomenon for practical 
application. More precisely, when the transmitted 
power is low such as -20 dBm, the noise and 
interference dominate in the received signals so that 
the source signals can’t be distinguished obviously. 
However, when the transmitted power is too high 
such as 20 dBm, the transmitters produce many 
other nonlinear frequency components, i.e., 
harmonic wave, which is caused by the nonlinear 
distortion of amplifiers in the transmitted devices. 
However, when the transmitted power is controlled 
appropriately such as 0 dBm, our method provides 
good performance. Most importantly, our method 
shows better performance in terms of separation 
quality than Permutation Method when the 
transmitted power changes, which can be seen 
clearly in Fig. 12. Although these experiments are 
easy and simple, we believe the experimental results 
are very significant, especially for future 
corresponding practical applications. 
 
5 Conclusion 
This paper deals with the permutation and scaling 
indeterminacies problem of BSS in the case where 
the continuously mixing signals are split in time and 
processed block by block. Due to the inherent 
indeterminacies of BSS, tying the separated signals 
in each adjacent time block can’t recover the 
original sources correctly. This paper proposes a 
novel approach to eliminate the permutation and 
scaling indeterminacies by overlapping adjacent 
signal blocks. Simulations and realistic experiments 

are performed to validate the performance of our 
new approach. Future work includes the extension 
of mixture channel to convolution and nonlinear, for 
which more complicated realistic experiments will 
be performed.  
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